Skip to main content

Library Item

A Biologically-Inspired Approach for Fusing Facial Expression and Appearance for Emotion Recognition


Facial emotion recognition from video is an exemplar case where both humans and computers underperform. In recent emotion recognition competitions, top approaches were using either geometric relationships that best captured facial dynamics or an accurate registration technique to develop appearance features. These two methods capture two different types of facial information similarly to how the human visual system divides information when perceiving faces. In this paper, we propose a biologically-inspired fusion approach that emulates this process. The efficacy of the approach is tested with the Audio/Visual Emotion Challenge 2011 data set, a non-trivial data set where state-of-the-art approaches perform under chance. The proposed approach increases classification rates by 18.5% on publicly available data.