Skip to main content

Library Item

Salmon subsidies alleviate nutrient limitation of benthic biofilms in Southeast Alaskan streams


Using nutrient-diffusing substrata (NDS) in seven streams in southeast Alaska, USA, we tested whether (i) nutrient limitation of autotrophic and heterotrophic biofilms was alleviated by salmon resource subsidies, and (ii) whether the degree of alleviation could be predicted by environmental variables. Before salmon spawners arrived, autotrophic biofilms were nitrogen (N)-limited, or co-limited by N and phosphorus (P), whereas heterotrophic biofilms were either P-limited, or co-limited by N and P. Combined N and P amendments resulted in a 2.6-fold increase in biofilm chlorophylla, and a 3.2-fold increase in community respiration. After salmon arrived, autotroph nutrient limitation was alleviated in six of the seven streams. Heterotrophs still exhibited nutrient limitation in six streams, but most streams shifted from co-limitation to P-limitation. Nutrient-diffusing substrata amended with salmon tissue indicated that salmon could also be an important source of organic carbon for biofilms. Autotrophs responded less to N and P amendments as streamwater ammonium concentration increased with the arrival of salmon. For heterotrophs, ammonium concentration and N:P ratio best predicted changes in response following the arrival of salmon. We provide the first direct evidence that biofilm nutrient limitation can be alleviated by salmon spawners in nutrient-poor streams.